روش های کمترین باقیمانده تعمیم یافته (gmres)و بررسی نرخ همگرایی آن دریک سیستم خطی خاص

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان
  • نویسنده طاهره یزدی
  • استاد راهنما پرویز سرگلزایی
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1389
چکیده

در این پایان نامه روش تکراری کمترین باقیمانده تعمیم یافته (gmres) را یکبار با استفاده از تبدیلات گیونز و بار دیگر با استفاده از مشتق مورد بررسی قرار داده و سپس آنها را از نظر تعداد اعمال حسابی و مقدار حافظه اشغال شده مورد مقایسه قرار می دهیم. نرخ همگرایی کمترین باقیمانده تعمیم یافته (gmres) را برای سیستم خطی ax=b با ماتریس تاپ لیتز سه قطری، وقتی که b ستون اول یا آخر ماتریس همانی باشد مورد بررسی قرار می دهیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شناساپذیری در مدل های خطی تعمیم یافته با اثرهای تصادفی

شناساپذیری یکی از ویژگی‌های لازم برای کفایت یک مدل آماری است. وقتی مدلی شناساپذیر نباشد، با هیچ اندازه‌ای از نمونه، نمی‌توان پارامتر حقیقی مدل را تعیین کرد. در این مقاله، مروری بر مفهوم مشهور شناساپذیری و ویژگی‌های آن شده است. به‌علاوه از آن‌جایی که مشکل شناساناپذیری در مدل‌های خطی تعمیم‌یافته‌ با اثرهای تصادفی بسیار رایج است، تمرکز اصلی ما بر روی این گونه از مدل‌ها بوده است. از سوی دیگر، معمول...

متن کامل

مروری بر مهتری های عادی و تعمیم یافته و بررسی ساختار نگهدارنده های خطی آنها

در این مقاله مفهوم مهتری در گونه های مختلف برداری، ماتریسی، چندگانه و تعمیم یافته بررسی می شود. هر یک از انواع مهتری یک رابطه هم ارزی روی مجموعه ماتریس ها تعریف می کند. ساختارنگه دارنده های خطی بعضی از این رابطه های هم ارزی را مشخص می کنیم.

متن کامل

تحلیل پایداری سیستم های تصادفی قطعه قطعه خطی و بررسی آن با معادلات فوکر پلانک تعمیم یافته

در این مقاله به موضوع پایداری سیستم های تصادفی قطعه قطعه هموار که زیر مجموعه ای از سیستم های هیبرید تصادفی هستند، پرداخته می شود. در اینجا سیگنال های نویز در زیرسیستم های به صورت جمعی در نظر گرفته می شود که دامنه آن هادر نقطه تعادل سیستم صفر نمی شود. این نویزها مانع پایداری نمایی تصادفی سیستم های هیبرید تصادفی می شوند که این نوع پایداری نمایی به صورت گسترده در مقالات مورد بحث قرار گرفته است. هم...

متن کامل

ترمیم تصاویر محوشده با استفاده از روش های کمترین مربعات تعمیم یافته و کمترین مربعات یلوکی

ترمیم تصاویر از مسائل مهم و کلاسیک در علوم مختلف مانند علم پزشکی,هواشناسی,کنترل خط تولیدو...مورد استفاده قرار می گیرد.هدف از ترمیم تصویر,یافتن تقریبی از تصویر واقعی است.یکی از روش های متداول برای یافتن تصویر واقعی استفاده از روش کمترین مربعات است.در این پایان نامه از روش های کمترین مربعات تعمیم یافته و کمترین مربعات بلوکی استفاده می کنیم و نتایج عددی را با روش کمترین مربعات مقایسه می کنیم.درپای...

مدل سازی جواب های سالیتونی معادله غیر خطی تعمیم یافته رادهاکریشنان-کاندو-لاکشمینن

بیشتر مسائل در فیزیک، ریاضی و مهندسی از جمله مکانیک سیالات (جریان سیال و انتقال حرارت و...) فیزیک پلاسما، لیزر، اپتیک و معادلات به طور ذاتی غیر خطی هستند. اکثریت این مسائل توسط معادلات دیفرانسیل جزئی و معمولی شکل پیدا می کنند. به جزء تعداد محدودی از این معادلات که داری حل تحلیلی دقیق هستند، بیشتر این مسائل حل دقیق ندارند؛ که باید به وسیله شیوه‌های جدیدی مبتنی بر کد نویسی هایی بر پایه نرم افزاره...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023